TraLFM: Latent Factor Modeling of Traffic Trajectory Data
نویسندگان
چکیده
منابع مشابه
Modeling Relational Data via Latent Factor Blockmodel
In this paper we address the problem of modeling relational data, which appear in many applications such as social network analysis, recommender systems and bioinformatics. Previous studies either consider latent feature based models but disregarding local structure in the network, or focus exclusively on capturing local structure of objects based on latent blockmodels without coupling with lat...
متن کاملLatent Variable Modeling of Batch Processes for Trajectory Tracking Control
Latent Variable Modeling (LVM) of batch processes is explored from the view point of its application to trajectory tracking model predictive controller design. The ability of the models to capture nonlinearity and time-varying properties of batch processes and to provide a well-behaved description of the process are important characteristics to be considered. Furthermore, the importance of requ...
متن کاملModeling Herd Trajectory Data Warehouse
Studding the movement of animals and their behavior become an important subject. Indeed, such study can generate useful information used next to assist the decision makers involved in different domains such as agriculture, security, health care and business. We present in this work a trajectory model related to the displacement of the herd, which allows the generation of trajectory data that is...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Speech Parameter Sequence Modeling with Latent Trajectory Hidden Markov Model
The weakness of hidden Markov models (HMMs) is that they have difficulty in modeling and capturing the local dynamics of feature sequences due to the piecewise stationarity assumption and the conditional independence assumption on feature sequences. Traditionally, in speech recognition systems, this limitation has been circumvented by appending dynamic (delta and delta-delta) components to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Intelligent Transportation Systems
سال: 2019
ISSN: 1524-9050,1558-0016
DOI: 10.1109/tits.2019.2912075